Abstract
The synchrotron radiation–computed tomography (SR-CT) and digital volume correlation (DVC) methods were used to investigate the damage micromechanisms of lost foam casting (LFC) A319 alloy in low-cycle fatigue (LCF). LCF tests with SR-CT in-situ observations allow visualizing the damage evolution process in the bulk. DVC measures the mechanical fields and, thus, allows establishing the relations between crack initiation and propagation, mechanical fields, and microstructure. Cracks initiate at and propagate along hard inclusions due to strain localizations. The damage process, i.e., crack initiation and propagation, can be considered as a series of failure events of hard inclusions under strain localizations. The pores’ size, shape, location, and number were observed to have an influence on crack initiation, while the interconnected hard inclusion networks guarantee the continuous failure events of hard inclusions and, thus, provide crack propagation paths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.