Abstract

The reliability and lifetime of micro-joints on printed circuit boards (PCBs) is significantly affected by fatigue processes, including fatigue crack initiation and propagation to failure. Accordingly, the industries producing electronic devices and components strongly desire the development of a new nondestructive inspection technology, which detects micro-cracks appearing as thermal fatigue fractures in these joints. Accordingly, the authors have demonstrated that the micro-cracks in the micro-solder joints can be observed using the SP-μCT synchrotron X-ray micro tomography system. However, in order for such solder joint micro-cracks to be observable by SP-μCT, the observation object must have a diameter of less than roughly 1 mm. In this investigation, we applied a synchrotron radiation X-ray laminography system to three-dimensionally and nondestructively evaluate the fatigue crack propagation process in flip chip solder micro-joints. X-ray laminography is a technique for nondestructively observing planar objects. The optical system developed for use in X-ray laminography was constructed to provide the rotation stage with a 20° tilt from the horizontally incident X-ray beam. For this reason, X-rays were sufficiently transmitted through the planar object, in all directions. The observed specimens had a flip chip structure, in which a 10.04 mm square LSI chip is connected to a 52.55 mm (length) × 30.0 mm (width) FR-4 substrate by 120 μm diameter Sn-3.0wt%Ag-0.5wt%Cu lead-free solder bumps. A thermal cycle test was carried out, and specimens were collected at fixed cycle numbers. The same solder joints were observed successively using the synchrotron radiation X-ray laminography system at beamline BL20XU at SPring-8, the largest synchrotron radiation facility in Japan. An X-ray beam energy of 29.0 keV was selected to obtain laminography images with high contrast among component. The obtained laminography images clearly show the evolution of cracks, voids, and the Ag3Sn phase due to the thermal cyclic loading of the solder joints. In addition, the surface area of the same fatigue cracks was also measured, to quantify the crack propagation process. However, the surface area change measured by laminography differed from the crack propagation results obtained by standard SP-μCT. This difference may be due to an inability to observe some micro-cracks, due to crack closure to beneath than the detection limit of synchrotron radiation X-ray laminography. Consequently, these results demonstrate the possibility that nondestructive observation of fatigue cracks in the solder bumps on a large size electronic substrate by synchrotron radiation X-ray laminography, although its detection ability for narrow cracks may be limited, compared to SP-μCT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call