Abstract

AbstractThe authors present a model for diagnosing motor faults based on machine learning, demonstrating advantages over other algorithms in terms of both improved fitness values and reduced running time. The structure of the model involves three primary phases: feature extraction, feature selection and classification. During the feature extraction phase, crucial features are identified using empirical mode decomposition, fast Fourier transform and multiresolution analysis, resulting in a total of 144 features. The feature selection stage employs a new strategy that combines symmetrical uncertainty in the filter approach with the binary grey wolf optimiser and emperor penguin optimiser in the wrapper approach. Finally, a support vector machine is used for classification to generate fitness values. To validate the model's effectiveness and accuracy, motor fault current signal datasets, case Western Reserve University (CWRU) benchmark datasets and mechanical failure prevention technology benchmark datasets are utilised. In the motor fault current signal dataset, the highest average accuracy achieved is 99.95%, with a minimum average running time of 88.02 s obtained under ∞dB conditions. Regarding benchmark datasets and mechanical failures at CWRU, using the prevention technology benchmark dataset resulted in classification accuracies of 99.54% and 99.52%, respectively. Comparative analysis with traditional algorithms reveals that symmetric uncertainty and emperor penguin–grey wolf optimisation model outperforms traditional models in terms of performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.