Abstract

The NASA Langley Normal Incidence Tube (NIT) and Grazing Flow Impedance Tube (GFIT) are regularly employed to characterize the frequency response of acoustic liners through the eduction of their specific acoustic impedance. Both test rigs typically use an acoustic source that produces sine wave signals at discrete frequencies (Stepped-Sine) to educe the impedance. The current work details a novel approach using frequency-swept sine waveforms normalized to a constant sound pressure level for excitation. Determination of the sound pressure level and phase from microphone measurements acquired using swept-sine excitation is performed using a modified Vold-Kalman order tracking filter. Four acoustic liners are evaluated in the NIT and GFIT with both stepped-sine and swept-sine sources. Using these two methods, the educed impedance spectra are shown to compare favorably. However, the new (Swept-Sine) approach provides much greater frequency resolution in less time, allowing the acoustic liner properties to be studied in much greater detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call