Abstract

This paper introduces the use of the Swarm Variant of the Mean-Variance Mapping Optimization (MVMO-S) to solving the multi-scenario problem of the optimal placement and coordinated tuning of power system damping controllers (POCDCs). The proposed solution is tested using the classical IEEE 39-bus test system, New England test system. This papers includes performance comparisons with other emerging metaheuristic optimization: comprehensive learning particle swarm optimization (CLPSO), genetic algorithm with multi-parent crossover (GA-MPC), differential evolution DE algorithm with adaptive crossover operator, linearized biogeography-based optimization with re-initialization (LBBO), and covariance matrix adaptation evolution strategy (CMA-ES). Numerical results illustrates the feasibility and effectiveness of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.