Abstract

The paper considers the problem of optimal control of a prosumer with a wind power plant in smart grid. It is shown that control can be performed in non-deterministic conditions due to the impossibility of accurate forecasting of the generation from renewable plants. A control model based on a priority queue of logical rules with structural-parametric optimization is applied. The optimization problem is considered from a separate prosumer, not from the entire distributed system. The solution of the optimization problem is performed by three swarm intelligence algorithms. Computational experiments were carried out for models of wind energy systems on Russky Island and Popov Island (Far East). The results obtained showed the high effectiveness of the swarm intelligence algorithms that demonstrated reliable and fast convergence to the global extreme of the optimization problem under different scenarios and parameters of prosumers. Also, we analyzed the influence of accumulator capacity on the variability of prosumers. The variability, in turn, affects the increase of the prosumer benefits from the interaction with the external global power system and neighboring prosumers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.