Abstract
In Global Navigation Satellite Systems (GNSS) using L-band frequencies, the ionosphere causes signal delays that correspond with link related range errors of up to 100 m. In a first order approximation the range error is proportional to the total electron content (TEC) of the ionosphere. Whereas this first order range error can be corrected in dual-frequency measurements by a linear combination of carrier phase- or code-ranges of both frequencies, single-frequency users need additional information to mitigate the ionospheric error. This information can be provided by TEC maps deduced from corresponding GNSS measurements or by ionospheric models. In this paper we discuss and compare different ionospheric correction methods for single-frequency users. The focus is on the comparison of the positioning quality using dual-frequency measurements, the Klobuchar model, the NeQuick model, the IGS TEC maps, the Neustrelitz TEC Model (NTCM-GL) and the reconstructed NTCM-GL TEC maps both provided via the ionosphere data service SWACI (http://swaciweb.dlr.de) in near real-time. For that purpose, data from different locations covering several days in 2011 and 2012 are investigated, including periods of quiet and disturbed ionospheric conditions. In applying the NTCM-GL based corrections instead of the Klobuchar model, positioning accuracy improvements up to several meters have been found for the European region in dependence on the ionospheric conditions. Further in mid- and low-latitudes the NTCM-GL model provides results comparable to NeQuick during the considered time periods. Moreover, in regions with a dense GNSS ground station network the reconstructed NTCM-GL TEC maps are partly at the same level as the final IGS TEC maps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.