Abstract
The objective of this paper is to present the application of sustainable integrated process design and control methodology for distillation columns systems. The sustainable integrated process design and control methodology is developed and able to find the optimal solution for a single distillation column to ensure the design is more cost efficient, controllable and sustainable to meet the product quality. The sustainable integrated process design and control problem for a distillation column system is typically formulated as a mathematical programming (optimization with constraints) problem, and solved by decomposing it to six sequential hierarchical sub-problems: (i) pre-analysis, (ii) design analysis, (iii) controller design analysis, (iv) sustainability analysis, (v) detailed economics analysis and (vi) final selection and verification. In the pre-analysis sub-problem, the concept of driving force is used to locate the optimal design-control-sustainable solution targets, which are defined at the maximum point of the driving force diagram. The sustainability analysis sub-problem was analysed by using the three-dimensional sustainability index. The results through separation of n-Pentane, n-Hexane, n-Heptane, n-Octane and n-Decane mixtures with four distillation column systems shows the methodology is capable to find the optimal solution for multiple distillation column systems that satisfies design, control and sustainability criteria in a simple and efficient way.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.