Abstract

With the rapid development of the Internet of Vehicles (IoV), traffic sign detection plays an indispensable role in advancing autonomous driving and intelligent transportation. However, current road traffic sign detection technologies face challenges in terms of information privacy protection, model accuracy verification, and result sharing. To enhance system sustainability, this paper introduces blockchain technology. The decentralized, tamper-proof, and consensus-based features of blockchain ensure data privacy and security among vehicles while facilitating trustworthy validation of traffic sign detection algorithms and result sharing. Storing model training data on distributed nodes reduces the system computational resources, thereby lowering energy consumption and improving system stability, enhancing the sustainability of the model. This paper introduces an enhanced GGS-YOLO model, optimized based on YOLOv5. The model strengthens the feature extraction capability of the original network by introducing a coordinate attention mechanism and incorporates a BiFPN feature fusion network to enhance detection accuracy. Additionally, the newly designed GGS convolutional module not only improves accuracy but also makes the model more lightweight. The model achieves an enhanced detection accuracy rate of 85.6%, with a reduced parameter count of 0.34×107. In a bid to broaden its application scope, we integrate the model with blockchain technology for traffic sign detection in the IoV. This method demonstrates outstanding performance in traffic sign detection tasks within the IoV, confirming its feasibility and sustainability in practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.