Abstract

Recent years there has been a rapid expansion of research into nanophotonics based on surface plasmon polariton (SPP), which is a collective electron oscillation propagating along a metal-dielectric interface together with an electromagnetic wave [1]. What distinguishes SPPs from photons is that they have a much smaller wavelength at the same frequency. Therefore SPPs possess remarkable capabilities of concentrating light in a nanoscale and the resulted significant enhancement of localized field [2]. SPPs can be excited by an incident electromagnetic wave if their wavelength vectors match. This is usually achieved by nanopatterning the metal film. The resonant frequency of SPP is determined by the metal materials, dielectric materials, profiles and dimensions of the patterns, etc. As a result, the tunability of SPP enables its application as a colour filter in the visible range. Actually this was used in the stained glass manufacture hundreds years ago. Since the extraordinary optical transmission through a nanohole array in a thin metal film was reported by Ebbesen [3], the plasmonic photon sorting has been explored for the potential applications in digital imaging and light display [4,5]. In addition, SPP based light manipulating elements like planar metallic lenses, beam splitters, polarizers have been investigated both theoretically and experimentally [6-7].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call