Abstract

Developing a sensing platform that can quickly and accurately measure glutathione (GSH) is crucial for the early detection of various human diseases. GQDs have shown great potential in many technological and biological applications. This study focused on synthesizing nitrogen-doped GQDs (NGQDs) with stable blue fluorescence using a simple and easy hydrothermal method in one step. The bamboo fiber was used as the green source for this synthesis. The NGQDs had a tiny particle size of 4.7 nm and emitted light at 405 nm when excited. They displayed a remarkable quantum yield of 40.36 % and were effectively used as fluorescent probe to specifically detect Fe3+. The energy transfer mechanism led to the NGQDs' fluorescence being deactivated by Fe3+ ions (turn- “off”). However, with the addition of GSH to the system, the fluorescence intensity of NGQDs was reactivated (turn- “on”). Thus, a fluorescence turn “off–on” system was developed for the sensitive detection of Fe3+ and GSH. Using density functional theory (DFT), it was theoretically calculated that the surface of the fabricated NGQDs possess lone pairs of electrons on oxygens and doped nitrogen causing a photo-induced electron transfer (PET) process to occur. This PET process was suppressed previously owing to complex formation between oxygen atoms of modeled structure and ferric ions. The sensing platform displayed a sensitive response to Fe3+ in the 1–1000 μM range with LOD of 34 nM and GSH in the range of 1–50 μM, with a detection limit of 45 nM. Furthermore, the NGQDs exhibited high selectivity towards Fe3+ and GSH over other electrolytes and biomolecules. Additionally, the probe exhibited non-cytotoxicity and was practically applicable for the detection of GSH in HeLa cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call