Abstract

Surface-guided radiation therapy is an image-guided method using optical surface imaging that has recently been adopted for patient setup and motion monitoring during treatment. We aimed to determine whether the surface guide setup is accurate and efficient compared to the skin-marking guide in prostate cancer treatment. The skin-marking setup was performed, and vertical, longitudinal, and lateral couch values (labeled as "M") were recorded. Subsequently, the surface-guided setup was conducted, and couch values (labeled as "S") were recorded. After performing cone-beam computed tomography (CBCT), the final couch values was recorded (labeled as "C"), and the shift value was calculated (labeled as "Gap (M-S)," "Gap (M-C)," "Gap (S-C)") and then compared. Additionally, the setup times for the skin marking and surface guides were also compared. One hundred and twenty-five patients were analyzed, totaling 2,735 treatment fractions. Gap (M-S) showed minimal differences in the vertical, longitudinal, and lateral averages (-0.03 cm, 0.07 cm, and 0.06 cm, respectively). Gap (M-C) and Gap (S-C) exhibited a mean difference of 0.04 cm (p = 0.03) in the vertical direction, a mean difference of 0.35 cm (p = 0.52) in the longitudinal direction, and a mean difference of 0.11 cm (p = 0.91) in the lateral direction. There was no correlation between shift values and patient characteristics. The average setup time of the skin-marking guide was 6.72 minutes, and 7.53 minutes for the surface guide. There was no statistically significant difference between the surface and skin-marking guides regarding final CBCT shift values and no correlation between translational shift values and patient characteristics. We also observed minimal difference in setup time between the two methods. Therefore, the surface guide can be considered an accurate and time-efficient alternative to skin-marking guides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.