Abstract

Background and purposeSnoring is one of the sleep disorders, and snoring sounds have been used to diagnose many sleep-related diseases. However, the snoring sound classification is done manually which is time-consuming and prone to human errors. An automated snoring sound classification model is proposed to overcome these problems. Material and methodThis work proposes an automated snoring sound classification method using three new methods. These methods are maximum absolute pooling (MAP), the nonlinear present pattern, and two-layered neighborhood component analysis, and iterative neighborhood component analysis (NCAINCA) selector. Using these methods, a new snoring sound classification (SSC) model is presented. The MAP decomposition model is applied to snoring sounds to extract both low and high-level features. The presented model aims to attain high performance for SSC problem. The developed present pattern (Present-Pat) uses substitution box (SBox) and statistical feature generator. By deploying these feature generators, both textural and statistical features are generated. NCAINCA chooses the most informative/valuable features, and these selected features are fed to k-nearest neighbor (kNN) classifier with leave-one-out cross-validation (LOOCV). The Present-Pat based SSC system is developed using Munich-Passau Snore Sound Corpus (MPSSC) dataset comprising of four categories. ResultsOur model reached an accuracy and unweighted average recall (UAR) of 97.10 % and 97.60 %, respectively, using LOOCV. Moreover, a nocturnal sound dataset is used to show the universal success of the presented model. Our model attained an accuracy of 98.14 % using the used nocturnal sound dataset. ConclusionsOur developed classification model is ready to be tested with more data and can be used by sleep specialists to diagnose the sleep disorders based on snoring sounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call