Abstract
Background and objectiveAs a novel non-invasive human brain stimulation method, transcranial focused ultrasound (tFUS) is receiving growing attention due to its superior spatial specificity and depth penetrability. Since the focal point of tFUS needs to be fixated precisely to the target brain region during stimulation, a critical issue is to identify and maintain the accurate position and orientation of the tFUS transducer relative to the subject's head. This study aims to propose the entire framework of tFUS stimulation integrating the methods previously proposed by the authors for tFUS transducer configuration optimization and a subject-specific 3D-printed helmet, and to validate this complete setup in a human behavioral neuromodulation study. MethodsTo find the optimal configuration of the tFUS transducer, a numerical method based on subject-specific tFUS beamlines simulation was used. Then, the subject-specific 3D-printed helmet has been applied to effectively secure the transducer at the estimated optimal configuration. To validate this tFUS framework, a common behavioral neuromodulation paradigm was chosen; the effect of the dorsolateral prefrontal cortex (DLPFC) stimulation on anti-saccade (AS) behavior. While human participants (n=2) were performing AS tasks, tFUS stimulations were randomly applied to the left DLPFC right after the fixation target disappeared. ResultsThe neuromodulation result strongly suggests that the cortical stimulation using the proposed tFUS setup is effective in significantly reducing the error rates of anti-saccades (about -10 %p for S1 and -16 %p for S2), whereas no significant effect was observed on their latencies. These observed behavioral effects are consistent with the previous results based on conventional brain stimulation or lesion studies. ConclusionsThe proposed subject-specific tFUS framework has been effectively used in human neuromodulation study. The result suggests that the tFUS stimulation targeted to the DLPFC can generate a neuromodulatory effect on AS behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.