Abstract
The aim of electrical impedance tomography is to determine the internal conductivity distribution of some physical body from boundary measurements of current and voltage. The most accurate forward model for impedance tomography is the complete electrode model, which consists of the conductivity equation coupled with boundary conditions that take into account the electrode shapes and the contact resistances at the corresponding interfaces. If the reconstruction task of impedance tomography is recast as a Bayesian inference problem, it is essential to be able to solve the complete electrode model forward problem with the conductivity and the contact resistances treated as a random field and random variables, respectively. In this work, we apply a stochastic Galerkin finite element method to the ensuing elliptic stochastic boundary value problem and compare the results with Monte Carlo simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.