Abstract
Limited investigations have evaluated the effect of expanded polystyrene (EPS) beads on the structural lightweight concrete properties. EPS offers many features compared to natural or artificial lightweight aggregates including the elimination of aggregate saturation prior to concrete batching, ability to be fabricated on site, consistency in size and quality, and reduced cost. The main objective of this paper is to assess the suitability of finite element (FE) modeling based on deterministic and stochastic approaches to predict the shear strength behavior of reinforced concrete (RC) beams containing EPS additions. Test results showed that the experimental load-deflection properties recorded at failure can be well reproduced using both FE approaches. Nevertheless, the damaged-zone distribution and crack patterns that occur during the loading stages of RC beams cannot be approximated using the deterministic FE approach. In contrast, the stochastic method was quite suitable as it accounted for the concrete heterogeneity and altered spatial mechanical properties (such as compressive strength, splitting tensile strength, and Young’s modulus) due to EPS additions. Such data can be of interest to civil engineers seeking to predict the failure patterns and performance of structural lightweight members while reducing the time and resources needed to account for the concrete’s strength variability during experimental testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.