Abstract

Statistical modeling involves building sufficiently complex models to represent the system being investigated. Overly complex models lead to imprecise parameter estimates, increase the subjective role of the modeler, and can distort the perceived characteristics of the system under investigation. One approach for controlling the tendency to increased complexity and subjectivity is to use model selection criteria that account for these factors. The effectiveness of two selection criteria was tested in an application with the stock assessment program known as Stock Synthesis. This program, which is often used on the U.S. west coast to assess the status of exploited marine fish stocks, can handle multiple data sets and mimic highly complex population dynamics. The Akaike information criterion and Schwarz's Bayesian information criterion are criteria that satisfy the fundamental principles of model selection: goodness-of-fit, parsimony, and objectivity. Their ability to select the correct model form and produce accurate estimates was evaluated in Monte Carlo experiments with the Stock Synthesis program. In general, the Akaike information criterion and the Bayesian information criterion had similar performance in selecting the correct model, and they produced comparable levels of accuracy in their estimates of ending stock biomass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call