Abstract
Methods of statistical mechanics are applied to two important NP-complete combinatorial optimization problems. The first is the chromatic number problem, which seeks the minimal number of colors necessary to color a graph such that no two sites connected by an edge have the same color. The second is partitioning of a graph intoq equal subgraphs so as to minimize intersubgraph connections. Both models are mapped into a frustrated Potts model, which is related to theq- state Potts spin glass. For the first problem, we obtain very good agreement with numerical simulations and theoretical bounds using the annealed approximation. The quenched model is also discussed. For the second problem we obtain analytic and numerical results by evaluating the groundstate energy of theq=3 and 4 Potts spin glass using Parisi's replica symmetry breaking. We also perform some numerical simulations to test the theoretical result and obtain very good agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.