Abstract

In this report, we introduced spirobiindane group to poly(arylene ether sulfone) (PES) to build the structure of polymers with intrinsic microporosity (PIMs). A novel PESs (QOH-SBIs), which have spirobiindane and tetra(quaternary ammonium) hydroxide pendant moieties, were synthesized for anion-conducting binder material in membrane electrode assembly (MEA) of solid alkaline exchange membrane fuel cell (SAEMFC). The time-lag method was used to check the high gas permeability of the polymers. The high permeability is due to the micro-pores at the molecular level that is formed by the difference in chain thicknesses between two alternating units, thick spirobiindane group and thin arylene ether sulfone group. QOH-SBIs shows a semi-rigid chain conformation in a solution. The inter-chain spacing and chain conformation were measured with wide angle X-ray diffraction (WAXD) and small angle neutron scattering (SANS), respectively. High gas permeability directly affected the performance of SAEMFC. The MEA with spirobiindane-modified PES shows much higher maximum power density than that of spirobiindane-free PESs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.