Abstract

One of the most important issues in the wine sector and prevention of adulterations of wines are discrimination of grape varieties, geographical origin of wine, and year of vintage. In this experimental research study, UV-Vis and FT-IR spectroscopic screening analytical approaches together with chemometric pattern recognition techniques were applied and compared in addressing two wine authentication problems: discrimination of (i) varietal and (ii) year of vintage of red wines produced in the same oenological region. UV-Vis and FT-IR spectra of red wines were registered for all the samples and the principal features related to chemical composition of the samples were identified. Furthermore, for the discrimination and classification of red wines a multivariate data analysis was developed. Spectral UV-Vis and FT-IR data were reduced to a small number of principal components (PCs) using principal component analysis (PCA) and then partial least squares discriminant analysis (PLS-DA) and linear discriminant analysis (LDA) were performed in order to develop qualitative classification and regression models. The first three PCs used to build the models explained 89% of the total variance in the case of UV-Vis data and 98% of the total variance for FR-IR data. PLS-DA results show that acceptable linear regression fits were observed for the varietal classification of wines based on FT-IR data. According to the obtained LDA classification rates, it can be affirmed that UV-Vis spectroscopy works better than FT-IR spectroscopy for the discrimination of red wines according to the grape variety, while classification of wines according to year of vintage was better for the LDA based FT-IR data model. A clear discrimination of aged wines (over six years) was observed. The proposed methodologies can be used as accessible tools for the wine identity assurance without the need for costly and laborious chemical analysis, which makes them more accessible to many laboratories.

Highlights

  • The consumers have been increasingly interested in information on the characteristics and the quality of wine, especially with regard to composition, nutritional properties, and origin, and for that, establishing its authenticity is one of the most important aspects in food quality and safety

  • This study proves the usefulness of UV-Vis and Fourier Transform Infrared (FT-IR) screening techniques coupled with multivariate statistical analysis for red wine varietal classification and vintage year prediction

  • Applied as a classification technique on the four data matrices provided satisfactory classification results, UV-Vis spectroscopy being more appropriate for varietal discrimination of red wines, while

Read more

Summary

Introduction

The consumers have been increasingly interested in information on the characteristics and the quality of wine, especially with regard to composition, nutritional properties, and origin, and for that, establishing its authenticity is one of the most important aspects in food quality and safety. One of the possible and common adulterations of wine, besides sugaring and the watering, is the falsification of the geographical and varietal origins and vintage year. In this respect, major wine-producing countries have developed severe Appellation Control laws that regulate the use of regional names for wines, providing the reference for delimiting the geographical origin of the wines, which is considered a fundamental indication of quality for consumers [4]. Wine marketing strategies focus on associating the product image and the perception of quality with a specific region and/or variety, increasing the importance of regional and varietal characteristics [5]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call