Abstract

Spectral decomposition transforms seismic data into the frequency domain via mathematical methods such as the discrete Fourier transform, S-transform, time–frequency continuous wavelet transform and continuous wavelet transform. The transformed results include tuning cubes and a variety of discrete common frequency cubes, which reveal structural and stratigraphic features, such as channels, thin bed reflections, and subtle faults. When a spectral decomposition algorithm is applied to seismic reflection data, it breaks down the seismic signal into its frequency components and this allows visualization of the data at specific frequencies, and identification of stratigraphic and structural features that would otherwise be overlooked in full bandwidth displays. The stratigraphic features delineated through the different algorithms, such as channels and their sedimentary facies, could be related to the presence of reservoir rock, i.e., underground rock units where the oil migrates and accumulates. An example from the Southeast Petroleum Province in Mexico is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call