Abstract
Research into particulate polymer composites is of significant interest due to their potential for enhancing material properties, such as strength, thermal stability, and conductivity while maintaining low weight and cost. Among the various techniques for preparing particle-based composites, ultrasonic wave stimulation is one of the principal laboratory-scale methods for enhancing the dispersion of the discontinuous phase. Nevertheless, there is a scarcity of empirical evidence to substantiate the impact of stimulating materials with natural sound frequencies within the acoustic spectrum, ranging from 20 Hz to 20 kHz, during their formation process. The present work investigates the effect of acoustic stimuli with frequencies of 56, 111, and 180 Hz on the properties of an acrylic-based polymer and its discontinuous carbon-based composites. The results indicated that the stimulus frequency affects the cure time of the studied systems, with a notable reduction of 31% and 21% in the cure times of the neat polymer and carbon-nanofiber-based composites, respectively, after applying a frequency of 180 Hz. Additionally, the higher stimulation frequencies reduced porosity in the samples, increased the degree of dispersion of the discontinuous phase, and altered the composite materials' thermal, optical, and electrical behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.