Abstract

Rechargeable sodium-ion batteries have become more attractive because of its advantages such as abundant sodium resources and lower costs compared to traditional lithium-ion batteries. In keeping with the future development of high-capacity secondary batteries, solid-state batteries, which use solid electrolytes instead of liquid organic electrolytes, are expected to overcome the challenges of traditional lithium-ion batteries in terms of energy density, cycle life and safety. Among various electrolytes, polymer matrices have great potential and application in flexible solid-state sodium batteries, as they can form large molecular structures with sodium salts, exhibit low flammability and excellent flexibility. But there are still challenges including low ionic conductivity, poor wettability, electrode/electrolyte interface stability and compatibility, which can limit battery performance and hinder practical applications. The preparation, benefits, and drawbacks of polymer-based solid-state sodium batteries (SSBs) are examined in this article based on an overview of solid electrolytes from the perspectives of polymer-based sodium battery materials, solid polymer electrolytes, and composition polymer electrolytes. Finally, it provides insights into the challenges and potential developments for polymer-based solid-state sodium batteries in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call