Abstract

In this work, the smoothed finite element method (S-FEM) is employed to solve the acoustic scattering from underwater elastic objects. The S-FEM, which can be regarded as a combination of the standard finite element method (FEM) and the gradient smoothing technique (GST) from the meshless methods, was initially proposed for solid mechanics problems and has been demonstrated to possess several superior properties. In the S-FEM, the smoothed gradient fields are acquired by performing the GST over the obtained smoothing domains. Due to the proper softening effects provided by the gradient smoothing operations, the original “overly-stiff” FEM model is softened and the present S-FEM possesses a relatively appropriate stiffness of the continuous system. Therefore, the quality of the numerical results can be significantly improved. The numerical results from several typical numerical examples demonstrate that the S-FEM is quite effective to handle acoustic scattering from underwater elastic objects and can provide more accurate numerical results than the standard FEM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call