Abstract

In this paper, we consider a stochastic optimization problem with a convex piecewise linear (polyhedral) loss function, polyhedral constraints, and continuous random vector distribution. The objective is to maximize the probability that the loss function value does not exceed the specified level when constraints are satisfied. We use an approximation of polyhedral function and probability criterion, replacing maximum with smooth maximum transform and Heaviside function with sigmoid function. This replacement leads to the approximation of their gradients. Next, the problem solved using modified gradient descent. The accuracy and effectiveness of this method are shown in two examples. Also, we discuss some aspects of such approximations in the case of discrete random distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.