Abstract

Peroxydisulfate (PDS) is increasingly used for in situ chemical oxidation (ISCO) of organic pollutants in groundwater, but the efficient and applicable activator is still scarce. In this study, sludge-derived biochar (SDBC) was prepared by pyrolysis to activate PDS, which could effectively degrade the fluoroquinolone antibiotics (FQs, levofloxacin, enrofloxacin, norfloxacin and ciprofloxacin). Compared with pig manure and corn straw derived biochar, SDBC showed higher efficiency in PDS activation. Singlet oxygen (1O2) was identified as the major reactive species, and the surface-bonded radicals also contributed to the FQs degradation. The selective oxidation of FQs by 1O2 was first reported, which followed the trend of enrofloxacin ~ levofloxacin > norfloxacin ~ ciprofloxacin. The CO and Fe2+ on SDBC were the dominant reactive sites for PDS activating. Products analysis revealed that FQs degradation proceeds via the cleavage of the piperazine ring, breaking of the quinolone ring, decarboxylation, and defluorination. Moreover, the tertiary amine of N (4) on enrofloxacin was more reactive towards singlet oxygen than the secondary amine of N (4) on ciprofloxacin, inducing the faster degradation and de-toxicity of enrofloxacin in the reaction system. SDBC showed high reusability in PDS activation and negligible metals leachates were detected. The column study proved the efficiency of PDS/SDBC in groundwater remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call