Abstract
Iron-rich sludge produced during textile wastewater treatment has brought serious environmental burden, and usually undergoes incineration disposal without creating added value. In this work, novel adsorbents were fabricated through sintering treatment with dried iron-rich sludge (denoted as B) as precursor, aiming at the deep Sb(V) removal from textile wastewater. Structural characterization confirmed the presence of various iron oxides including α-Fe2O3 and amorphous ferrihydrite in the as-prepared adsorbents. Screening tests indicated that adsorbent obtained after sintering at 400 °C for 2 h (B-400) exhibited a significantly improved maximum adsorption capacity (161.36 mg g−1) as compared to B (51.72 mg g−1). The B-400 possesses lager specific surface area, and more favorable phases for Sb(V) adsorption as compared to B. Satisfying Sb(V) removal efficiency of B-400 is accomplished within a wide pH window ranging from 4 to 10, at varying ionic strengths. The co-existing ions, dyes and surfactants in textile wastewater trigger different degrees of negative impacts on Sb(V) adsorption by B-400, except for Cl− and cetyltrimethylammonium bromide. The Sb(V) adsorption by B-400 is a heterogeneous surface adsorption process, which can be well described by the Freundlich and Elovich models. The possible mechanisms include electrostatic interaction, inner-sphere complexation, and hydrogen bonding. The findings in this study fulfill the ‘waste control by waste’ strategy by removing Sb(V) from textile wastewater with textile sludge derived adsorbent materials, which achieves the self-recycling of waste during textile wastewater treatment, and contributes to sustainable development goals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.