Abstract
The application of silicalite for improvement of working characteristics of conductometric enzyme biosensors for determination of sucrose was studied in this research. Biosensors based on different types of silicalite-modified electrodes were studied and compared according to their analytical characteristics. Polyethylenimine/glutaraldehyde/silicalite-modified biosensors showed higher sensitivity compared with others type of biosensors. Moreover, the polyethylenimine/glutaraldehyde/silicalite sucrose biosensors were characterized by high selectivity and signal reproducibility (relative standard deviation (RSD) = 2.78% for glucose measurements and RSD = 3.2% for sucrose measurements). Proposed biosensors were used for determination of sucrose in different samples of beverages. The obtained results had good correlation with results obtained by HPLC. Thus, polyethylenimine/glutaraldehyde/silicalite-modified biosensors have shown perspective characteristics for the development of effective conductometric enzyme biosensors.
Highlights
In order to improve immobilization process which is crucial for creating of high-performance biosensors, various techniques are used
We studied the selectivity of PEI/GA/Sil sucrose biosensors
Conductometric enzyme biosensors based on different type of silicalite-modified electrodes were created and compared
Summary
In order to improve immobilization process which is crucial for creating of high-performance biosensors, various techniques are used. Very often different types of nanoparticles become more popular for biosensor creation. One of these perspective nanomaterials is zeolite. They are composed mainly of silicon, aluminum and oxygen. The modification of crystal structures makes it possible to obtain zeolites with different properties [1,2]. The regular microporous structure of the zeolite guarantees an improvement of the chemical and physical stabilities of the immobilized agent, whereas the porosity of the zeolite keeps open the access of the guest molecules or ions to the ambient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.