Abstract

Apatite and loparite are the main sources of rare earth elements (REE) in Russia. Loparite is a complex titanate and niobate containing up to 30% wt. of REE oxides predominantly of the cerium group. Extraction processing methods are used at the stages of group separation and separation of REE concentrates. Tributyl phosphate (TBP) is a widely used extracting agent for these purposes. Extraction technologies have a number of disadvantages, in particular, a large number of separation stages because of low separation coefficients of individual REE combined with difficulties in separating liquid phases. The use of TBP-containing sorbents allows to eliminate the latter disadvantage. Both organic polymers and inorganic compounds may be used as sorbent carriers; among inorganic ones, silica is widely used, and it was selected for this study. The purpose of this work was to study the effect of variations of the proposed methods for synthesis of silica and modified TBP based sorbents on their ability to extract REE from the solutions of loparite concentrate processing. The article briefly describes a procedure for sorbent samples synthesis. Tetraethoxysilane, tributyl phosphate, stannic chloride and nanotubes have been used as starting reagents for the synthesis. A number of physicochemical properties have been determined for the synthesized samples (pore volume and their average diameter, surface area and morphology, acid-base properties of the surface), and thermogravimetric analysis has been performed. The sorption properties of the samples have been tested by the example of REE extraction from process solutions of loparite working up. The separation coefficients of Sm/La pairs up to 3.7, Pr/Nd up to 1.8 were obtained; therefore, the studied samples may be potentially used for samarium isolation from the REE combination, as well as for Pr – Nd pair separation. This study was supported by the Tomsk State University Development Programme (Priority-2030).The SEM researches and results of measuring the specific surface area (SBET) and porous structure were carried out with the equipment of Tomsk Regional Core Shared Research Facilities Center of National Research Tomsk State University. Center was supported by the Ministry of Science and Higher Education of the Russian Federation Grant no. 075-15-2021-693 (no. 13.RFC.21.0012)).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call