Abstract
Bearings-only tracking (BOT) plays a vital role in underwater surveillance. In BOT, measurement is tangentially related to state of the system. This measurement is also corrupted with noise due to turbulent underwater environment. Hence state estimation process using BOT becomes nonlinear. This necessitates the use of nonlinear filtering algorithms in place of traditional linear filters like Kalman filter. In general, these nonlinear filters utilize the assumption of measurements being corrupted with Gaussian noise for state estimation. The measurements cannot be always corrupted with Gaussian noise because of the highly unstable sea environment. These problems indicate the necessity for development of nonlinear non-Gaussian filters like particle filter (PF) for underwater tracking. However, PF suffers from severe problems like sample degeneracy and impoverishment and also it is tedious to select an appropriate technique for resampling. To overcome these difficulties in PF implementation, the strategy of combining PF with another filter like unscented Kalman filter is proposed for target’s state estimation. The detailed analysis of the same is presented in comparison with other particle filter combinations using the simulation results obtained in Matlab.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.