Abstract

Guaranteeing the quality of the transmitting current under low switching frequency conditions is the crucial point in the helicopter transient electromagnetic (HTEM) system which affects the efficiency and exploration accuracy. HTEM requires high efficiency and low switching loss of the inverter power supply due to the facts that HTEM uses air-launched and air-received measurement methods, and the power storage capacity of the airborne transmitting system is limited. Paradoxically, low switching frequency directly affects the transmitting waveform quality and thereby affects the detection accuracy. In this study, we present a semiperiodic mirror symmetry selective harmonic elimination pulse width modulation (SHEPWM) based on the subsection control approach to balance transmitting current quality and switching loss. In the SHEPWM method, the semiperiodic mirror symmetry SHEPWM nonlinear equations are established by the time frequency domain information of the inverter output voltage and resolved by the artificial neural network (ANN) algorithm to attain switching time sequence of desired transmitting current. The simulation and experimental results verify the effectiveness of the SHEPWM subsection control strategy, which can reduce the switching loss while ensuring the current waveform quality and detection accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.