Abstract

We present an automatic, fast, accurate and robust method of classifying astronomical objects. The Self Organizing Map (SOM) as an unsupervised Artificial Neural Network (ANN) algorithm is used for classification of stellar spectra of stars. The SOM is used to make clusters of different spectral classes of Jacoby, Hunter and Christian (JHC) library. This ANN technique needs no training examples and the stellar spectral data sets are directly fed to the network for the classification. The JHC library contains 161 spectra out of which, 158 spectra are selected for the classification. These 158 spectra are input vectors to the network and mapped into a two dimensional output grid. The input vectors close to each other are mapped into the same or neighboring neurons in the output space. So, the similar objects are making clusters in the output map and making it easy to analyze high dimensional data.After running the SOM algorithm on 158 stellar spectra, with 2799 data points each, the output map is analyzed and found that, there are 7 clusters in the output map corresponding to O to M stellar type. But, there are 12 misclassifications out of 158 and all of them are misclassified into the neighborhood of correct clusters which gives a success rate of about 92.4%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.