Abstract

Abstract. The UAS fault problem has led to many potential risk factors behind its rapid development in recent years. Therefore, the diagnosis of UAS health status is still an important issue. This study adopted the SOM machine learning method which is an unsupervised clustering method to establish a model for diagnosing the health status of quadcopter. Take the vibration features of three flight states (undamaged, motor mount loose, unbalanced broken propeller). Through those training data the model can cluster different vibration pattern of fault situation. It not only can classify the failure status with 99% accuracy but also can provide pre-failure indicators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.