Abstract

An instrumental method based on the use of secondary ion mass spectrometry (SIMS) is presented for the identification of uranium particles, and the determination of their isotopic composition. The particles collected on swipe samples were transferred to a special adhesive support for analysis by SIMS. Charging effects during analysis were avoided by a coating with 20 nm carbon. For the measurements of the isotope ratios a mass resolution of 1000 was sufficient. At this resolution, flat-top peaks were obtained which greatly improve the accuracy of the measurement. A detection limit in the ng/g—pg/g range was obtained by optimizing different instrumental parameters, such as the acquisition time. Blank samples, consisting only of the adhesive support and of swipes collected in an environment where uranium was absent, were employed for the evaluation of the background signals in the mass range 233–240. The level of background was eliminated by applying a voltage offset. From the results obtained on simulated swipe samples containing certified enriched uranium, the approach used was found to be very promising and after further improvements has been applied for the routine analysis of uranium particles in swipe samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.