Abstract

In this study, removal of Cr(VI) by Scallop shell-Fe3O4 nanoparticles was investigated with variation of pH, adsorbent dosage, initial Cr(VI) concentration, ionic strength and temperature. Coating of Fe3O4 nanoparticles onto Scallop shell was identified by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. The maximum adsorption was observed at pH 3. Removal efficiency of Cr(VI) was increased with increasing adsorbent dosage, but was decreased with increasing initial Cr(VI) concentration and temperature. Removal efficiency of Cr(VI) was decreased in the presence of sulfate and carbonate ions. Adsorption kinetic study revealed that a pseudo-second order model better described the removal data than a pseudo-first order model and an intra-particle diffusion model. Maximum adsorption capacity was estimated to be 34.48 mg/g. Thermodynamic studies indicated that adsorption of Cr(VI) onto Scallop shell-Fe3O4 nanoparticles occurred via an exothermic (ΔH = -320.88 KJ mol-1) process. Adsorption efficiency of Cr(VI) by Scallop shell-Fe3O4 nanoparticles was maintained even after eight successive cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.