Abstract
Time–frequency representations (TFR) have been intensively employed for analysing vibration signals in gear fault diagnosis. However, in many applications, TFR are simply utilized as a visual aid to detect gear defects. An attractive issue is to utilize the TFR for automatic classification of faults. A key step for this study is to extract discriminative features from TFR as input feature vector for classifiers. This article contributes to this ongoing investigation by applying morphological pattern spectrum (MPS) to characterize the TFR for gear fault diagnosis. The S transform, which combines the separate strengths of the short-time Fourier transform and wavelet transforms, is chosen to perform the time–frequency analysis of vibration signals from gear. Then, the MPS scheme is applied to extract the discriminative features from the TFR. The promise of MPS is illustrated by performing our procedure on vibration signals measured from a gearbox with five operating states. Experiment results demonstrate the MPS to be a satisfactory scheme for characterizing TFRs for an accurate classification of gear faults.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.