Abstract

This study investigates the properties of cement-based composites with addition of various rock wool wastes. The rock wool wastes are an insulating material. This study used rock wool waste with a cylindrical size distribution ranging from 17 to 250 μm, 30% of which is less than 150 μm. Rock wool waste can be used as a suitable substitute for coarse and fine aggregates, saving on the cost of natural aggregates and minimizing the environmental impact of solid waste disposal. In addition, because the composition of rock wool waste is similar to other pozzolan materials such as fly ash, ground granulated blast-furnace slag (GGBS), and silica fume, it can be considered as a supplementary cementitious material. Experimental results show that partially replacing natural aggregates with rock wool wastes improves the compressive strength, splitting tensile strength, abrasion resistance, absorption, resistance to potential alkali reactivity, resistivity, and chloride-ion penetration of cement-based composites. These improved properties are the result of the dense structure achieved by the filling effect of pozzolanic product. Pozzolanic strength activity index (PSAI) results and scanning electron microscope (SEM) observations confirm these findings. Therefore, rock wool wastes can act as either a cementitious material or inert filler in cement-based composites, depending on the particle size. The critical size appears to be 75 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.