Abstract
Neutron stress measurements require specimens of complex geometry to be speedily and accurately positioned and oriented with respect to the neutron beam. Recognition that a majority of the specimen positioning systems in use at strain scanning facilities are effectively serial robot manipulators, suggests that the methods of serial robot kinematic modelling may be applied to advantage. The adoption of robotics methods provides a simple and reliable framework for controlling positioning systems of arbitrary geometry and complexity. In addition the numerical solution of the inverse kinematic problem is facilitated, allowing specimens to be automatically positioned and orientated so that pre-determined strain components are measured. It is also shown that, given sufficient degrees of freedom, a secondary characteristic of the measurement position such as the measurement count time may be simultaneously optimised.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.