Abstract

Objective: To investigate the value of robot-assisted laparoscopic indocyanine green sentinel lymph node (SLN) tracing in treating endometrial carcinoma. Methods: Thirty-two patients with early-staging endometrial carcinoma were operated with laparoscopic comprehensive staging laparotomy from January 2019 to December 2021. At the same time, the SLN detection was performed by near-infrared fluorescence imaging tracer technology, in which the tracer was indocyanine green. Sixteen cases were injected with indocyanine green before laparoscopic surgery, and 16 cases were injected with indocyanine green before robot-assisted laparoscopic surgery. The operation index, postoperative complications, prognosis, and lymph node dissection were compared between the two groups. Results: (1) The mean age of patients in the robot group was (54.7±8.1) years old, and was (54.9±8.8) years old in the laparoscopic group. There were no significant difference between the two groups (t=0.06, P=0.951). (2) Intraoperative blood loss [(131±40) vs (169±57) ml], hemoglobin difference before and after surgery [(11.2±5.4) vs (15.5±5.7) g/L], the length of stay after operation [(6.2±1.3) vs (8.6±1.4) days] between the robot group and the laparoscopic group were compared, and the differences were statistically significant (all P<0.05). (3) SLNs were detected in all 16 patients in the robotic group, and a total of 41 SLNs were detected. SLNs were detected in 15 of the 16 patients in the laparoscopy group, and a total of 40 SLNs were detected. Compared with the laparoscopic group (15/16), the total detection rate of SLN in the robotic group (16/16), there were no statistical significance (χ2=1.03, P=0.310). Compared with the laparoscopic group (7/15), the SLN bilateral detection rate in the robotic group (10/16), there were also no significant difference (χ2=0.78, P=0.376). The number of lymph nodes detected in surgery group (16.6±4.1) were lower than those in the laparoscopy surgery group (21.0±7.1), while there were no statistically difference between the two groups (χ2=2.01, P=0.054). There was no tumor metastasis in the resected lymph nodes and SLN between the two groups. The false negative rate of SLN in diagnosing endometrial cancer postoperative lymph node metastasis was 0, and the negative predictive value was 100%. (4) The pelvic and retroperitoneal lymph nodes were divided into five regions, which were the left pelvis, the right pelvis, the presacral region, the deep inguinal region, and the abdominal aorta. The numbers of SLN of unilateral detection and bilateral pelvic detection between two groups showed no significant differences (all P>0.05). The left pelvis had the most SLN imaging in both groups, followed by the right pelvis, para-aortic, and deep groin. (5) There was one patient in both robotic group and laparoscopic group with postoperative complications, which were urinary retention and pelvic lymph node cyst respectively. There were no significant differences in the incidence of complications between the two groups (χ2=0.97, P=1.000). The median follow-up time after operation was 14 months (range 6-24 months). During the follow-up period, no local recurrence or distant metastasis was found between the two groups of endometrial cancer patients. Conclusions: Compared with the laparoscopic group, the robot group has less intraoperative blood loss and shorter postoperative hospital stay. The bilateral detection rate of SLN in the group was better than that of laparoscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call