Abstract

There are analytical methods in the literature where a zero-free-length spring-loaded linkage is perfectly statically balanced by addition of more zero-free-length springs. This paper provides a general framework to extend these methods to flexure-based compliant mechanisms through (i) the well know small-length flexure model and (ii) approximation between torsional springs and zero-free-length springs. We use first-order truncated Taylor's series for the approximation between the torsional springs and zero-free-length springs so that the entire framework remains analytical, albeit approximate. Three examples are presented and the effectiveness of the framework is studied by means of finite-element analysis and a prototype. As much as 70% reduction in actuation effort is demonstrated. We also present another application of static balancing of a rigid-body linkage by treating a compliant mechanism as the spring load to a rigid-body linkage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.