Abstract

This paper applies two different types of Riemann–Liouville derivatives to solve fractional differential equations of second order. Basically, the properties of the Riemann–Liouville fractional derivative depend mainly on the lower bound of the integral involved in the Riemann–Liouville fractional definition. The Riemann–Liouville fractional derivative of first type considers the lower bound as a zero while the second type applies negative infinity as a lower bound. Due to the differences in properties of the two operators, two different solutions are obtained for the present two classes of fractional differential equations under appropriate initial conditions. It is shown that the zeroth lower bound implies implicit solutions in terms of the Mittag–Leffler functions while explicit solutions are derived when negative infinity is taken as a lower bound. Such explicit solutions are obtained for the current two classes in terms of trigonometric and hyperbolic functions. Some theoretical results are introduced to facilitate the solutions procedures. Moreover, the characteristics of the obtained solutions are discussed and interpreted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.