Abstract

The two-phase technology for olive oil extraction generates large amounts of patè olive cake (POC), a by-product that is rich in bioactive health-promoting compounds. Here, response surface methodology (RSM) was used to maximize supercritical-CO2 oil extraction from POC, while minimizing operative temperature, pressure and time. Under the optimal parameters (40.2°C, 43.8MPa and time 30min), the oil yield was 14.5g·100g-1 dw (~65% of the total oil content of the freeze-dried POC matrix), as predicted by RSM. Compared with freeze-dried POC, the oil contained more phytosterols (13-fold), tocopherols (6-fold) and squalene (8-fold) and was a good source of pentacyclic triterpenes. When the biological effects of POC oil intake (20-40µL·die-1) were evaluated in the livers of BALB/c mice, no significant influence on redox homeostasis was observed. Notably, a decline in liver triglycerides alongside increased activities of NAD(P)H:Quinone Oxidoreductase 1, Carnitine Palmitoyl-CoA Transferase and mitochondrial respiratory complexes suggested a potential beneficial effect on liver fatty acid oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.