Abstract

AbstractPharmaceutical compounds in drinking water sources, in addition to threatening environmental health, increase bacterial resistance in aquatic environments. The purpose of this study was to investigate the application of response surface methodology for the optimization of the electrochemical process in the removal of metronidazole (MNZ) aqueous solutions using stainless steel 316 (SS316) and Lead (Pb) anodes. In this experimental study, the effect of different parameters including pH (4–10), electrolysis time (40–120 min), MNZ antibiotic concentration (30–150 mg/L), and current density (2–10 mA/cm2) on Antibiotic removal efficiency was evaluated by a central composite design method using Design-Expert software. Data were analyzed using ANOVA and p-Value tests. Hence, central composite design (CCD) established a reduced quadratic polynomial model with P-value < 0.0001 and R2 = 0.98. The optimal values for the solution pH initial, electrolysis time, current density, and MNZ antibiotic concentration were 5.5, 100.0 min, 8.0 mA/cm2, and 50 mg/L, respectively. By employing the optimum conditions obtained, the maximum experimental removal efficiencies by SS316 and Pb anodes were 67.85 and 78.66%, respectively. The Chemical Oxygen Demand/total organic carbon (COD/TOC) ratio was decreased from 1.67 at the inlet to 1.53 at the outlet for SS316 and from 1.7 to 1.42 for Pb. Moreover, average oxidation state (AOS) was increased from 1.45 to 1.7 for SS316 and from 1.45 to 1.86 for Pb, which indicates the biodegradability of MNZ antibiotics by the electrochemical process. The electrochemical degradation process was identified as an effective method for the removal of MNZ from aquatic solutions, and it has an outstanding potential in removing other refractory pollutants from the environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call