Abstract

The aim of the present work was to investigate the removal of phenol from a synthetic solution by the enhanced electrochemical oxidation process using graphite electrodes. Central composite design (CCD) and Box Behnken Design (BBD) under Response Surface Methodology (RSM) tool were used to investigate the effects of major operating variables viz. Current density (mA/ cm2): (2.27 to 4.54), pH: (5.5 to 7.5) and electrolysis time (min): (30 to 90). The predicted values of BBD responses obtained using RSM were more significant than the CCD model in terms of reaction time, whereas under the desirability test CCD model was found more appropriate in terms of phenol removal and power consumption. The optimal result shows that the CCD model predicted and experimental values of phenol removal and power consumption are 92.87 %; 0.866 kWh/m3 and 86.34 %; 1.12 kWh/m3 respectively under optimized variable conditions, current density: 2.78 mA/cm2, pH: 6.98 and electrolysis time: 88.02 minutes at high desirability level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.