Abstract

Driven by constantly increasing energy demands, prices, environmental impact caused by carbon dioxide emissions and global warming, efficient use of energy is gaining grounds in both public and private enterprises. The energy consumption of belt conveyors can be lowered using energy modelling techniques. In this research, 
 a resistance-based mathematical energy model was utilised in 
 the electrical energy efficiency optimisation of the troughed, inclined belt conveyor system taking into account indentation rolling resistance, bulk solid flexure resistance and secondary resistance as they together contribute 89% resistance to motion. An optimisation problem was formulated to optimise the electrical energy efficiency of the belt conveyor system and subsequently solved using 
 the “fmincon” solver and interior point algorithm of the MATLAB optimisation toolbox. Analysis of simulation results showed that for the same given operating capacities, an average energy saving of about 7.42% and an annual total cost savings of Gh¢ 5, 852, 669.00 (USD 1, 083, 827.59) for a 2592-hour operation can be achieved when the used model and optimisation technique are employed over the constant speed operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.