Abstract
This paper examines the potential of relevance vector machine (RVM) in prediction of ultimate capacity of driven piles in cohesionless soils. RVM is a Bayesian framework for regression and classification with analogous sparsity properties to the support vector machine (SVM). In this study, RVM has been used as a regression tool. It can be seen as a probabilistic version of SVM. In this study, RVM model outperforms the artificial neural network (ANN) model based on root-mean-square-error (RMSE) and mean-absolute-error (MAE) performance criteria. It also estimates the prediction variance. An equation has been developed for the prediction of ultimate capacity of driven piles in cohesionless soils based on the RVM model. The results show that the RVM model has the potential to be a practical tool for the prediction of ultimate capacity of driven piles in cohesionless soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.