Abstract

This paper proposes two approaches to the skin lesion image segmentation problem. The first is a mainly region-based segmentation method where an optimal threshold is determined iteratively by an isodata algorithm. The second method proposed is based on neural network edge detection and a rational Gaussian curve that fits an approximate closed elastic curve between the recognized neural network edge patterns. A quantitative comparison of the techniques is enabled by the use of synthetic lesions to which Gaussian noise is added. The proposed techniques are also compared with an established automatic skin segmentation method. It is demonstrated that for lesions with a range of different border irregularity properties the iterative thresholding method provides the best performance over a range of signal to noise ratios. Iterative thresholding technique is also demonstrated to have similar performance when tested on real skin lesions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.