Abstract

There has been significant progress in recent years in the use of machine learning techniques to model high-dimensional reactive potential energy surfaces using large-scale data obtained from ab initio electronic structure calculations. In these methods, the strategy used to gather data becomes a key issue as the molecular size increases. In this work, we examine the applicability of the reaction path search algorithm implemented in the Global Reaction Route Mapping (GRRM) code as a data-gathering approach. The electronic energies and gradients sampled by using the GRRM calculation are directly used in potential energy surface fitting to a permutationally invariant polynomial function. This simple approach was applied to the HNS and HCNO reaction systems, and we found that the fitted potential energy surfaces reasonably reproduce the features of the electronic structure calculations used in the GRRM calculations. This suggests that the GRRM sampling scheme can be used to construct an initial potential energy surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.