Abstract

People enjoy spending time in the wilderness for numerous reasons. However, they occasionally get lost or injured, and their survival depends on being efficiently found and rescued in the shortest possible time. A search and rescue operation (SAR) is launched after the accident is reported, and all possible resources are activated. The inclusion of drones in SAR operations has enabled the use of computer vision methods to detect persons in aerial imagery automatically. When searching by drone, preference is given to oblique photographs that cover a larger area within a single image, reducing the search time. Unlike vertical photographs, oblique photographs include a significant scale change, making it challenging to locate a person in the real world and determine their distance from the drone. In order to solve this problem, encouraged by our previous successful simulations, we explored the possibility of applying the raycast method for person geolocalization and distance determination for use in real-world scenarios. In this paper, we propose a system able to precisely geolocate persons automatically detected in offline processed images recorded during the SAR mission. After a series of experiments on terrains of different configurations and complexity, using a custom-made 3D terrain generator and raycaster, along with a deep neural network-based person detector trained on our custom dataset, we defined a method for geolocating detected person based on raycast, which allows using low-cost commercial drones with a monocular camera and no Real-Time Kinematic module while enabling laser rangefinder emulation during offline image analysis. Our person geolocating method overcomes the problems faced by previous methods and, using a single flight sequence with only 4 consecutive detections, significantly outperforms the previous best results, with reliability of 42,85% (geolocating error of 0.7 m on recording from a 30 m height). Also, a short time of only 247 s enables offline processing of data recorded during a 21-minute drone flight covering approximately an area of 10 ha, proving that the proposed method can be effectively used in actual SAR missions. We also proposed a new evaluation metric (ErrDist) for person geolocalization and provided recommendations for using the proposed system for person detection and geolocation in real-world scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.