Abstract
In group-housed poultry, hormone and environment modulated variability in the processes of follicle maturation and egg formation make it difficult to predict a daily egg-laying event (oviposition). Recording daily egg laying events has required individual cages or expensive technology such as RFID equipped nests or labor intensive trap nests. The current study implemented the random forest classification algorithm to predict oviposition events of 202 free run Ross 708 broiler breeder hens fed by a precision feeding system from week 21 to 55, based on a dataset recording information of all visits to the station. The raw dataset from the precision feeding system was processed for 6 classes of features (34 features in total) in relation to feeding activity and real-time body weight of birds. The dataset of the features was then combined with a corresponding daily individual oviposition record. The processed data were shuffled and separated into 2 subsets: 90% for training, and 10% for testing. Important features were selected using random forest-recursive feature elimination with 5-fold cross-validation, and 28 features were selected to build a random forest classification model. Overall accuracy of the model using the testing samples was 0.8482, and out-of-bag score was 0.8510. Precision (a measure of purity in retrieving) of no egg-laying and egg-laying, recall (a measure of completeness in retrieving) of no egg-laying and egg-laying were 0.8814, 0.8090, 0.8520 and 0.8453, respectively. The Kappa coefficient of the model was 0.6931, indicating substantial agreement (substantial agreement range: 0.61–0.80). This model was able to identify whether a free run broiler breeder laid an egg or not on a certain day during the laying period with around 85% accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.